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Abstract

A phase field model is presented to describe the mechanical behaviour of microstructure dependent materials, which
is demonstrated by applying it to eutectic tin–lead solder. This solder material is known to be heavily influenced by its
continuously evolving microstructure. For the constitutive behaviour of the different phases the elasto-viscoplastic Per-
zyna model has been used. It is coupled to the phase field model through the constitutive parameters which are taken
dependent on the mass fraction field resulting from the solution of the phase field equations.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Solder joints serve two important purposes. Firstly, they form the electrical connection between the com-
ponent, e.g. a chip or resistor, and a substrate, e.g. a printed circuit board. Secondly, they constitute the
mechanical bond that holds the component fixed to the substrate. During their life the joints are subjected
to combined thermal and mechanical stresses which considerably impacts the fatigue lifetime. Therefore,
their resistance to fatigue under thermal cycling is an important mechanical property of solder joints. Be-
cause of time limitations solder joints are often tested for their thermo-mechanical fatigue properties by
subjecting them to accelerated test methods. However, during these accelerated experiments, damage mech-
anisms might be exhibited by the solder alloy which do not occur during normal usage. Reversely, some
failure mechanisms are governed by time constants which are not reached in these test methods. Predictions
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based on accelerated cycling tests are therefore unreliable. Thermo-mechanical modelling could help to sim-
ulate the real life conditions of a solder joint and thus give a more accurate prediction of its lifetime. Fur-
thermore these techniques permit a significant reduction in cost and time of the design of highly reliable
soldered connections in electronic packaging and surface mount technology.

The service temperature T of solder alloys is typically above half of their melting temperature Tm, i.e. their
homologous temperature TH, which is the ratio between T and Tm is greater than 0.5. Because of this the
deformation behaviour is governed by high temperature mechanisms like creep, grain boundary sliding,
and relaxation. Therefore, in literature when modelling the mechanical behaviour of solder alloys, use is gen-
erally made of viscoplastic material models (Amagai, 1999; Basaran and Chanderoy, 2000). Numerous creep
rate functions have been proposed, for which an extensive review can be found in Ju et al. (1994). One of the
commonly used viscoplastic models for solder alloys is the Anand model (Anand, 1985). This model does not
have an explicit yield condition, and thus there will be no discrete switching between elastic and viscoplastic
behaviour. This should improve the numerical efficiency of the model. Furthermore, the model contains a
single internal variable that represents the resistance against inelastic flow. A drawback of this model is that
it contains many nonstandard parameters which need to be determined. In this contribution the viscoplastic
strain rate function defined by Perzyna (1966) is used to describe the time dependent mechanical behaviour
(Sluis et al., 1999). In literature it is most commonly used to model secondary creep: (Basaran et al., 1998; Ju
et al., 1994). Its parameters are more transparent than those of the Anand model and adaptation of the hard-
ening law is straightforward, leading to a highly flexible model. The standard Perzyna�s strain rate function
does not account for grain size and temperature dependent creep activation energy and power law break
down region of creep. It is well known that grain/phase size makes a significant difference in solder alloy
behaviour, and that the overall joint properties are heavily affected by themicrostructure (Basaran andChan-
deroy, 1998; Basaran and Tang, 2002). Vice versa, the evolution of the microstructure is affected by the stress
state in the material. The Sn–Pb system is known to coarsen under the influence of thermal or thermomechan-
ical loading (Hacke et al., 1998; Matin et al., 2004; Vianco et al., 1999). Frear et al. (1988) found that regions
of high shear strain within an eutectic tin–lead connection coarsened more. These regions of inhomogeneous
coarsening are known to be crack nucleation sites during thermal cycling (Frear, 1989; Hacke et al., 1998).

Various attempts have been made to include a microstructural variable like the average grain or phase
size in the mechanical model for a solder material (Basaran and Chanderoy, 1998, 2000; Frear et al., 1997;
Vianco et al., 1999). In the literature several equations can be found to describe grain size coarsening (Clark
and Aldan, 1973; Lifshitz and Slyozov, 1961; Senkov and Myshlyaev, 1986), however no information about
the distribution or shape of the grains is given. More information about the microstructure can be obtained
by using a diffuse interface model (Cahn and Hilliard, 1958). These models are based on the notion that the
free energy is not only a function of a local order parameter, but also depends on the value of this para-
meter in its immediate neighbourhood. In this way the contribution of an interface to the free energy is
included. Minimisation of the free energy then leads to coarsening of the system through the reduction
of interfaces, either grain or phase boundaries (Dreyer and Müller, 2000; Leo et al., 1998; Ni et al.,
2002; Ubachs et al., 2004; Zhu et al., 1999).

In various papers the influence of infinitesimal elastic strains on the evolution of themicrostructure is inves-
tigated (Artemev et al., 2000;Dreyer andMüller, 2001;Ni et al., 2002; Zhu et al., 2001). In this paper, however,
a phase fieldmodel is coupled to a finite strain elasto-viscoplasticmodel to investigate the impact of the under-
lyingmicrostructure. First, the evolution of themicrostructure is dealt with using a phase fieldmodel based on
a strongly nonlocal mass fraction which accounts for the evolution under thermal loading (Ubachs et al.,
2004). The phase field provides extensive information on themicrostructure: the mass fractions of the individ-
ual phases, their shape and orientation, and position and shape of interfaces between phases. This information
is further used to determine local material parameters for the constitutive material model applied, i.e. a
viscoplastic Perzyna model. In this way a microstructure dependent mechanical model for multiphase alloys
is obtained. A demonstration of the model is given by its application to eutectic tin–lead solder.
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First, in Section 2, the phase field model will be introduced which is used to calculate the distribution of
the phases in the system. Next, the viscoplastic material model used for each of the individual phases is
treated in Section 3, followed by some aspects of the numerical implementation in Section 4. Section 5 deals
with the choice of the material parameters. In Section 6 numerical simulations of mechanical loading of a
Sn–Pb solder alloy with different microstructure and strain rates are discussed, after which the conclusions
will be presented in Section 7.

In the following definitions, a Cartesian basis f~e1;~e2;~e3g is used. The Einstein summation convention is
adopted, where repeated indices are summed from 1 to 3. Notations and definitions as they are used in this
paper are summarised below.

Quantities

Scalar a; a; A
Vector ~a ¼ ai~ei
Second order tensor A ¼ Aij~ei~ej
Identity tensor I ¼ dij~ei~ej
Fourth order identity tensor I ¼ dildjk~ei~ej~ek~el ! I : A ¼ A
Fourth order tensor A ¼ Aijkl~ei~ej~ek~el
Column aeMatrix A

Operations

Scalar multiplication c = ab;~c ¼ a~b; C = aB

Dyadic product ~a�~b ¼ aibj~ei~ej
Inner product c ¼~a �~b ¼ aibi; C ¼ A � B ¼ AijBjk~ei~ek
Double inner product c = A:B = Aij Bji; C ¼ A : B ¼ AijklBlk~ei~ej
Conjugate/transpose C c ¼ Cji~ei~ej; C

c ¼ Cjilk~ei~ej~ek~el
Right conjugate Crc ¼ Cijlk~ei~ej~ek~el
Inverse A�1

Determinant detðAÞ ¼ ðA �~e1Þ � ðA �~e2Þ 
 ðA �~e3Þ
Deviatoric part Ad ¼ A� 1

3A : I

Gradient operator ~r ¼~ei o
oxi

Laplacian r2 ¼ ~r � ~r ¼~ei o
oxi

~ei o
oxi

� �
Derivative dAij ¼ oAij

odBkl
dBlk~ei~ej
2. Phase field model

In order to describe the microstructure and its evolution a phase field model is used. The mass fraction c

is taken as the field variable, and it is assumed that it varies continuously throughout the system. The evo-
lution of the mass fraction field is obtained by solving the nonlinear diffusion equation:
q
dc
dt

¼ ~r � qM � ~r dF
dc

; ð1Þ
where q is the mass density, t is time, M the mobility tensor and F the free energy. The variation of the free
energy with respect to the mass fraction is the chemical potential and is the driving force behind the diffu-
sion process: it determines how the microstructure will evolve. For the moment the free energy is assumed
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to consist out of two parts: the configurational energy, which determines the equilibrium mass fractions for
the different phases, and the interface energy which controls the number of interfaces, their size, and
orientation.

The free energy function which is the starting point for finding an expression for the mass flux is taken
from Giacomin and Lebowitz (1997), who derived a macroscopic equation describing phase segregation in
microscopic model systems with long-range interactions evolving according to stochastic Kawasaki dynam-
ics with nearest neighbour exchanges (see also Brandon (1994)). They obtained the following expression for
the specific free energy:
F ¼ F 0ðcð~xÞÞ þ
1

4

Z
X
gð~yÞ½cð~xÞ � cð~xþ~yÞ�2 d~y; ð2Þ
where X is the region around the material point with position vector ~x; ~y a local coordinate vector with
respect to ~x pointing to points in X, g is the nonlocal kernel (a symmetric smooth function (C1)), and
F0 is the equilibrium free energy density of a homogeneous system. Similar nonlocal extensions of the free
energy have been used by Gajewski and Zacharias (2003) and Fosdick and Mason (1998).

In this work the introduced nonlocality which accounts for interfacial effects is assumed to be Lagrang-
ian (material) in nature, i.e. the volume over which long range interactions occur is defined by the material
configuration. Using the specific free energy (2) and taking the variation with respect to cð~xÞ in order to
obtain the chemical potential l then gives:
l ¼ dF
dcð~xÞ ¼

oF 0

oc
þ 1

2

Z
X0

gð~yÞ½cð~xÞ � cð~xþ~yÞ�d~y; ð3Þ
which can be rewritten to yield:
l ¼ oF 0

oc
þ j½cð~xÞ � �cð~xÞ�; ð4Þ
where j is the interface tension coefficient. In here, the nonlocal mass fraction �c is defined as
�cð~xÞ ¼
Z

X0

g0ð~yÞcð~xþ~yÞd~y; j ¼ 1

2

Z
X0

gð~yÞd~y; and g0 ¼ g=j: ð5Þ
Eq. (5) can be reformulated towards an implicit Helmholtz equation (Ubachs et al., 2004):
�c� ‘2r2
0�c ¼ c; ð6Þ
where r2
0 represents Laplacian taken in the material (Lagragian) configuration, and ‘ is an internal length

parameter, which, when using an isotropic weighting function, which is only dependent on a radial coor-
dinate r, is defined as
‘2 ¼ 1

2X

Z
X0

r2gðrÞdr: ð7Þ
Note that the solution of this partial differential equation indeed leads to a strongly nonlocal solution as
assumed in (5). Details on this particular topic have been elaborated within the context of strongly nonlocal
damage (Peerlings et al., 2001). Details on the explicit format of the nonlocal kernel (which is the result of
the adopted mathematical approximation) can be found in this reference as well.

The reformulation of the integral expression (5) into differential equation (6) requires the introduction of
boundary conditions. Either the value of �c, its normal derivative, or a linear combination of these quantities
must be specified on the boundary. Here the homogeneous Neumann boundary condition has been used:
~r0�c �~n ¼ 0; ð8Þ
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where~n is the normal vector of the boundary. This condition preserves the global mass fraction of the entire
system in the nonlocal averaging:
ctotal ¼
1

X0

Z
X0

cd~x ¼ 1

X0

Z
X0

�cd~x: ð9Þ
More comments on this boundary condition can be found in Peerlings et al. (2001). The complete non-
local phase field model now reads
q
dc
dt

¼ ~r � qM � ~r oF 0

oc
� jð�c� cÞ

� �
; ð10Þ

�c� ‘2r2
0�c ¼ c: ð11Þ
More information on the diffusional phase field model can be found in Ubachs et al. (2003, 2004).
The solution of the system of equations yields detailed information on the distribution of phases in the

material, the position and orientation of interfaces, and the mass fractions in the separate phases. The
mechanical behaviour of the material is dependent on its microstructure. The various phases have different
mechanical properties and therefore stresses and strains will not be homogeneous throughout the material.
Knowledge of the mass fraction field allows to account for the heterogeneity of the material. The differences
in constitutive behaviour of the varies phases and interfaces can be dealt with in a continuum manner.

The eutectic tin–lead system is used to demonstrate the suggested approach. The same constitutive model
is assumed for both the Pb-rich a-phase and the Sn-rich b-phase. However, the parameters used are differ-
ent for each phase.
3. Single phase modelling by hyperelasto-viscoplasticity

3.1. Kinematics

Transformation from the undeformed configuration at time t0 to the current configuration at time t is
described by the standard deformation gradient tensor F, who�s determinant J = det(F) represents the rel-
ative volume change. The conventional multiplicative decomposition is used to split the deformation into
an elastic and inelastic (viscoplastic) part, denoted by subscripts e and vp respectively:
F ¼ ð~r0~xÞc ¼ Fe � Fvp: ð12Þ
The right and left Cauchy–Green strain tensors, C and B, and the Green–Lagrange strain tensor E are
classically given by
C ¼ Fc � F; B ¼ F � Fc; and E ¼ 1

2
ðC � IÞ: ð13Þ
Material velocity is taken into account by the deformation rate and spin tensors D and X, the symmetric
and skewsymmetric parts of the velocity gradient tensor L, respectively. Decomposition (12) implies the
introduction of elastic and viscoplastic rate tensors:
L ¼ ð~r~vÞc ¼ _F � F�1 ¼ _Fe � F�1
e þ Fe � _Fvp � F�1

vp � F�1
e ¼ Le þ Lvp ¼ ðDe þ XeÞ þ ðDvp þ XvpÞ: ð14Þ
To make the decomposition unique it is commonly assumed that the viscoplastic spin Xvp is zero.
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3.2. The Perzyna model

The one-dimensional mechanical representation of the elasto-viscoplastic Perzyna model consists of a
spring, a linear viscous dashpot, a hardening spring and a friction slider, see Fig. 1. The elastic spring rep-
resents the elastic part of the material response. The viscoplastic response, represented by the viscous dash-
pot and the (nonlinear) hardening spring becomes manifest as soon as the stress exceeds a characteristic
value and the plastic slider gives way.

For the three-dimensional case, the material is assumed to behave viscoplasticly after an equivalent stress
measure exceeds the current yield stress sy. Here the Von Mises equivalent stress is used which reads in
terms of the Kirchhoff stress tensor s:
seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sd : sd

r
; ð15Þ
with sd the deviatoric part of the stress tensor. The evaluation of the occurrence of yield is commonly eval-
uated through a yield criterion u. It can be represented as a yield surface in stress space. The classical Von
Mises–Huber yield function u is used to evaluate the stress state and to check whether the deformation is
purely elastic (u < 0) or viscoplastic (u P 0):
uðs; evpÞ ¼ seq � syðsy0; evp; _evpÞ: ð16Þ
Here, sy accounts for linear or nonlinear hardening or softening laws. The initial yield stress is denoted by
sy0 while the hardening behaviour will be related to the effective viscoplastic strain measure evp and its rate
_evp. The effective viscoplastic strain is obtained through integration over the loading history of its time
derivative:
evp ¼
Z t

0

_evp dt: ð17Þ
3.3. Hyperelastic model

A hyperelastic model is chosen to correctly describe the elastic part of the material behaviour at finite
deformations. In that case it is assumed that an elastic strain energy function Fe(E) exists, which can be
Fig. 1. Schematic one-dimensional representation of the elasto-viscoplastic Perzyna model.
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used to calculate the stresses. Here we use it to relate the 2nd Piola–Kirchhoff stress tensor S to the right
Cauchy–Green strain tensor C:
S ¼ JF�1 � r � F�c ¼ F�1 � s � F�c ¼ oF e

oE
¼ 2

oF e

oC
; ð18Þ
where r is the Cauchy stress tensor. Since the elastic part of the constitutive model is needed in rate form,
differentiation with respect to time is performed, yielding
_S ¼ 2
o2F e

oC2
: _C : ð19Þ
An elastic energy function is adopted, which characterises isotropic, compressible material behaviour
(Perić, 1992):
F e ¼
1

2
l½C : I � 3� 2 lnðJÞ� þ 1

2
kln2ðJÞ; ð20Þ
where l and k are Lamé�s constants defined as
l ¼ E
2ð1þ mÞ ; k ¼ mE

ð1þ mÞð1� 2mÞ ; ð21Þ
with E and m the Young�s modulus and Poisson�s ratio respectively. The first derivative of Eq. (20) with
respect to C then becomes
oF e

oC
¼ 1

2
lðI � C�1Þ þ 1

2
k lnðJÞC�1; ð22Þ
and its second derivative
o2F e

oC2
¼ 1

2
ðl � k lnðJÞÞC�1 � Irc � C�1 þ 1

4
kC�1C�1: ð23Þ
Here use has been made of the following tensor identity:
oC�1

oC
¼ �C�1 � Irc � C�1: ð24Þ
3.4. Viscoplastic model

During viscoplastic deformation the yield stress will change as a function of the effective viscoplastic
strain. Plastic flow does not induce any stresses in the material, therefore the constitutive model becomes
_S ¼ 2
o
2F e

oC2
: ð _C � _CvpÞ; ð25Þ
with
_C ¼ _C e þ _Cvp ¼ 2Fc �D � F; ð26Þ

_C e ¼ Fc
vp � _F

c

e � Fe � Fvp þ Fc
vp � Fc

e � _Fe � Fvp ¼ 2Fc �De � F; ð27Þ

_Cvp ¼ _F
c

vp � Fc
e � Fe � Fvp þ Fc

vp � Fc
e � Fe � _Fvp ¼ 2Fc �Dvp � F: ð28Þ
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With ongoing viscoplastic deformation the direction of the viscoplastic strain rate Dvp is defined by the
commonly used normality or associative flow rule which states that the strain rate is directed along the nor-
mal to the yield surface and denoted by ou/os. Its length is characterised by the rate of the viscoplastic mul-
tiplier _cvp. Thus the expression for the viscoplastic strain rate can be formulated as (Perzyna, 1985):
Dvp ¼ _cvpN ; where N ¼ ou
os

¼ 3

2

sd

seq
; and _cvp ¼ g/ðuÞ; ð29Þ
with g a fluidity parameter which determines the magnitude of the viscoplastic strain rate and /(u) the
overstress function. Viscoplastic strains are nonzero only if u P 0, i.e. for stress states on or outside the
yield surface. A power law is chosen for the overstress function (Perzyna, 1971):
/ðuÞ ¼ u
u0

� �N

¼ seq � sy
u0

� �N

; ð30Þ
with N the rate sensitivity parameter and u0 is a scaling parameter. Higher values of N reduce sensitivity of
the model to differences between strain rate values (Perić, 1993).

The relation between the rate of the hardening variable _evp and of the viscoplastic multiplier _cvp is set to
the straightforward relation:
_evp ¼ _cvp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
Dvp : Dvp

r
: ð31Þ
The hyperelastic material model returns the stress when the elastic deformation is known. However, as
can be seen again from the mechanical model, the elastic deformation has to be isolated from the total
deformation, which is generally known during an analysis. This is only possible if the viscoplastic stress
can be evaluated. As is described above, the viscoplastic strain rate is related to the stress by the flow rule.
An integration procedure is needed to calculate the viscoplastic strain.

In case of viscoplastic behaviour, i.e. u P 0 the model now consists of the following system of equations:
_S ¼ 2
o2F e

oC2
: ð _C � _CvpÞ; with _Cvp ¼ 2Fc � _cvpN � F; ð32aÞ

_cvp ¼ g
seq � sy

u0

� �N

: ð32bÞ
In case of fully elastic behaviour, i.e. u < 0, _cvp will equal zero and only Eq. (32a) needs to be solved.

3.5. Phase field coupling

As mentioned earlier each phase is assumed to obey the same constitutive law, only the parameters differ.
This means that the elastically and viscoplastically stored energy Fe and Fvp are dependent on the mass frac-
tion c. In this way information on the microstructure obtained with the phase field model is included in the
constitutive model. In their turn, the mechanically stored energies will influence the phase field and its evo-
lution. The chemical potential now reads
l ¼ oF 0

oc
þ oF e

oc
þ oF vp

oc
þ j½c� �c�: ð33Þ
However, in this contribution the microstructure evolution is evaluated separately from the mechanical part
of the model. Therefore, the influence of the mechanically stored energies on the diffusion is not taken into
account.
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4. Finite element implementation

4.1. Momentum equation

In the absence of body/volumetric forces, the momentum equation is given by the zero divergence of the
Cauchy stress tensor:
~r � r ¼ 0: ð34Þ
The gradient operator in this equation is the spatial, or Eulerian gradient operator, i.e. it is taken in the
current configuration. Multiplying the equation with a vectorial weighting function ~w and integrating over
the domain X with a boundary C whose unit outward normal is ~n, yields
Z

X

~w � ð~r � rÞdX ¼ 0; 8~w: ð35Þ
Applying the divergence theorem, using r = rc and applying the natural boundary condition r �~n ¼~p on C
leads to
Z

X
ð~r~wÞc : rdX ¼

Z
C
~w �~pdC: ð36Þ
Because of the nonlinear and time dependent nature of the stress this equation needs to be solved iteratively
by using a standard Newton–Raphson iteration procedure. First the left hand side is transformed to the last
known equilibrium configuration at time t according to ~r ¼ F�c

D � ~rt (with FD = F Æ [Ft]�1 the incremental
deformation gradient tensor) and dX = (J/Jt)dXt, and using s = Jr results in
Z

Xt
ð~rt~wÞc : F�1

D � s 1

J t dXt ¼
Z

C

~w �~pdC: ð37Þ
Next, the unknown Kirchhoff stress tensor and incremental deformation gradient tensor are decomposed
in an iterative manner,
s ¼ sðiþ1Þ ¼ sðiÞ þ ds ^ FD ¼ F
ðiþ1Þ
D ¼ F

ðiÞ
D þ dFD; ð38Þ
leading to the following linearised weak formulation of the equilibrium condition
Z
Xt
½ð~rt~wÞc : ðd½F�1

D � � sðiÞ þ ½FðiÞ
D ��1 � dsÞ� 1

J t dXt ¼
Z

C

~w �~pðiþ1Þ dC �
Z

Xt
ð~rt~wÞc

: ð½FðiÞ
D ��1 � sðiÞÞ 1

J t dXt: ð39Þ
Introducing the variational deformation gradient tensor
Lc
d ¼ ð~rd~xÞc ¼ dF � F�1 ¼ dFD � F�1

D ; ð40Þ
allows for rewriting d½F�1
D � as �½FðiÞ

D ��1 � dFD � ½FðiÞ
D ��1 ¼ �½FðiÞ

D ��1 � Lc
d. Transformation back to the last

known configuration then results in
Z
ð~r~wÞc : ½�I � sðiÞ : Lc

d þ ds� 1
ðiÞ dX ¼

Z
~w �~pðiþ1Þ dC �

Z
ð~r~wÞc : sðiÞ

1
ðiÞ dX: ð41Þ
X J C X J
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4.2. Incremental time discretisation

To solve Eq. (41), an expression for the Kirchhoff stress tensor is needed. It can be derived from the con-
stitutive equations, system (32). Since this system cannot be integrated analytically, an incremental time
integration scheme will be used. The system is formulated in terms of invariant variables, which remain
unaltered under superposed spatial rigid body motions thereby preserving the principle of objectivity. This
ensures that no spurious stresses are generated due to rigid body motions. An implicit (or backward) Euler
scheme is used, resulting in
DS ¼ S � St ¼ 2
o2F e

oC2
: ðC � C t � 2Fc � DcvpN � FÞ; ð42aÞ

Dcvp ¼ cvp � ctvp ¼ Dtg
seq � sy

u0

� �N

; ð42bÞ
which can be rewritten in terms of the Kirchhoff stress by applying a push forward towards the current con-
figuration yielding
s ¼ FD � st � Fc
D þH : ½eD � DcvpN �; ð43aÞ

Dcvp ¼ Dtg
u
u0

� �N

; ð43bÞ
where eD is the incremental Almansi strain tensor
eD ¼ 1

2
I � F�c

D � F�1
D

	 

; ð44Þ
and H represents the fourth order constitutive tensor
H ¼ 4 F � F � o
2F e

oC2
� Fc

� �lc;rc

� Fc

" #
: ð45Þ
Substituting Eq. (23) this can be rewritten to yield
H ¼ 2½l � k lnðJÞ�Irc þ kII : ð46Þ
It now remains to relate the variation of the Kirchhoff stress Eq. (43)to Lc
d:
ds ¼ C : Lc
d: ð47Þ
In the following section the consistent tangents will be derived for the elastic and the viscoplastic case.

4.3. Consistent tangent

For a fully elastic increment, i.e. u < 0 the incremental update for the Kirchhoff stress tensor reads:
s ¼ FD � st � Fc
D þHðJÞ : eD: ð48Þ
The variation of the stress then becomes:
ds ¼ dFD � st � Fc
D þ FD � st � dFc

D þ oH

oJ
: eDdJ þHðJÞ : deD; ð49Þ
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which after some manipulations, see Appendix A.1, can be rewritten in the form of Eq. (47) with
C ¼ Ce ¼ 2IS � FD � st � Fc
D þ J

oH

oJ
: eDI þH : IS � F�c

D � F�1
D

	 
rc
: ð50Þ
The derivative of the material tensor H, Eq. (46), with respect to J reads
oH

oJ
¼ �2k

o lnðJÞ
oJ

Irc ¼ �2k
1

J
Irc: ð51Þ
For a viscoplastic increment (u > 0) the incremental update of the Kirchhoff stress tensor reads:
s ¼ FD � st � Fc
D þHðJÞ : ðeD � DcvpNÞ: ð52Þ
The hardening law is next assumed to be a function of cvp only, i.e. the yield stress can be a function of
the viscoplastic multiplier and/or its rate, syðcvp; _cvpÞ. After some manipulations, see Appendix A.2, the var-
iation of the stress can be rewritten as
ds ¼ N�1 : ðCe þ TÞ : Lc
d ¼ Cvp : L

c
d; ð53Þ
with Ce as defined in Eq. (50), and the fourth order tensors T and N as
T ¼ 2Dcvpk
1

J
NI ; ð54Þ
and
N ¼ Iþ c2H : NN þH : Dcvp
1

seq

3

2
I� 1

2
II �NN

� �
: ð55Þ
where the coefficients c1 and c2 equal
c1 ¼ NDt
g
u0

seq � sy
u0

� �N�1

and c2 ¼
c1

1þ osy
oDcvp

c1
: ð56Þ
4.4. Stress update algorithm

Every increment is initially assumed to be fully elastic. The stresses obtained in this elastic predictor state
are then used to check the yield criterion. If this has been violated return mapping has to be performed, i.e.
the amount and direction of plastic flow has to be determined and the stresses should be updated accord-
ingly. The return mapping requires the set of nonlinear Eqs. (43) to be solved. This will be done using the
previously described standard Newton–Raphson iterative procedure.

It can be shown that for the current hyperelastic model the direction of plastic flow is fully determined by
the elastic predictor state, N = *N, see Appendix A.3. Furthermore, for the stress update algorithm the
nodal displacements are known and fixed, except for the plane stress case. Therefore the volume and the
stresses of the elastic predictor will not change, i.e. dJ and d*s are zero. Decomposing system (43) in an
iterative manner, ( Æ )(i + 1) = ( Æ ) + d( Æ ), thus results in
I : ds þH : NdDcvp ¼ �s � s �H : NDcvp; ð57aÞ

dDcvp � c1ðN : ds � dsyÞ ¼ Dtg
u
u0

� �N

� Dcvp; ð57bÞ



2544 R.L.J.M. Ubachs et al. / International Journal of Solids and Structures 42 (2005) 2533–2558
with
c1 ¼
DtgN
u0

u
u0

� �N�1

: ð58Þ
See Appendix A.3 for details. Since it is assumed that the incremental hardening law is only a function of
Dcvp the system that needs to be solved becomes
I : ds þH : NdDcvp ¼ �s � s �H : NDcvp; ð59aÞ

�c1N : ds þ 1þ c1
osy

oDcvp

 !
dDcvp ¼ Dtg

u
u0

� �N

� Dcvp: ð59bÞ
The system can also be solved in an uncoupled manner, first Eq. (43b) is solved, next the stress is updated
by evaluating the linear equation (43a). Linearisation of Eq. (43b) yields
1þ c1 N : H : N þ osy
oDcvp

 !" #
dDcvp ¼ Dtg

u
u0

� �N

� Dcvp: ð60Þ
5. Material parameters

In order to minimize the global energy, a homogeneous tin–lead mixture will start to phase separate.
From the free energy function for the system, see Fig. 2, it can be deduced that the preferred state of mate-
rial is a system consisting of a- and b-phase regions with mass fractions corresponding to the binodal
points. In this state the configurational energy of the total system is at its lowest point. The binodal points
can be found by constructing a double tangent to the free energy curve. For more details on this subject see
Ubachs et al. (2004). It follows that, with the exception of the interfaces, the tin–lead system consists only of
a- and b-phase regions, whose compositions are determined by the corresponding binodal points.

No direct mechanical data is available on the separate phases. Therefore, the required parameters are
extracted from measurements performed on multiphase solder joints. First the material parameters for
the bulk solder are determined. Next, a linear extrapolation is performed to find the required parameters
for the a-phase containing 0% Sn and the b-phase containing 0% Pb. To find the material parameters g,
N, sy, and u0 for the Perzyna model, saturation stress versus inelastic strain curves are reproduced from
the parameters for the Anand model given in Cheng et al. (2000) and Wang et al. (2001) who exploited data
provided by Darveaux and Banerji (1992). In the experiments performed by Darveaux and Banerji (1992)
Fig. 2. Configurational free energy for a two phase system.
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shear deformations up to 50% for 60Sn–40Pb and 130% for 2.5Sn–97.5Pb were recorded before the onset of
damage.

From the experimental stress strain curves at constant strain rates it can be seen that the hardening is
strain rate dependent. Therefore the following evolution law for the yield stress is chosen
Fig. 3.
(c = 0.
sy ¼ sy0 þ h1 _e
h2
vp½1� expð�h3evpÞ�; ð61Þ
where h1, h2, and h3 are hardening parameters. The derivative of the yield stress with respect to the visco-
plastic multiplier needed for Eqs. (60) and (56) then reads (after applying a backward Euler time
discretisation)
osy
oevp

oevp
oDcvp

¼ h1
Dt

_eh2�1
vp ½h2 � ðh2 � h3DcvpÞ expð�h3evpÞ�: ð62Þ
The parameter determination will be done from stress strain curves obtained at constant strain rates. In
that case the following expression for the stress during a uniaxial tensile test at constant strain rate can be
found using Eqs. (29)–(31):
seq ¼ u0

_evp
g

� �1=N

þ sy0 þ h1 _e
h2
vp½1� expð�h3evpÞ�: ð63Þ
Fig. 3 shows the material data from Cheng et al. (2000) and the fitted curves for two Sn–Pb systems with
different mass compositions. First the g, N, sy0, and u0 are determined by fitting. They determine the initial
yield stress—indicated in the figures by a circle—which is highly dependent on the strain rate. These para-
meters are then held constant while the hardening parameters are fitted. The fitted parameters for both
compositions are summarised in Table 1.

Because the phase field model provides a continuous field for the mass fraction c ranging from 0 to 1,
material parameters need to be known for all 0 6 c 6 1. In a first-order approximation, all parameters
are assumed to be linearly dependent on c, e.g. E = (1 � c)EPb + cESn. Parameter values for the individual
components should correspond to the parameters found with the fitting procedure above when using this
linear rule to calculate properties for their specific composition. This assumption then allows for extracting
material parameters for the individual phases. The applied first-order rule is only valid nearby the a and the
b phases, which are the phases actually present in the multi-phase mixture. Note that the values for the a-
phase with 0% tin (a-0%Sn) and the b-phase containing 0% lead (b-0%Pb) can differ considerably from
(a) (b)

Fitting of Perzyna parameters, stress versus inelastic strain, dotted lines are fitted: (a) 60Sn–40Pb (c = 0.6), (b) 2.5Sn–97.5Pb
025).



Table 1
Perzyna material data for the tin–lead solder system

Parameter Symbol Unit 60–40 tin–lead 0.025–97.5 tin–lead b-0%Pb a-0%Sn

Young�s modulus E [GN/m2] 10–39 41 16
Poisson�s ratio m [�] 0.32–0.37 0.33 0.44
Initial yield stress sy0 [MPa] 3.20 1.139 4.637 1.049
Fluidity g [�] 1.41 · 10�5 5.88 · 10�6 1.98 · 10�5 5.52 · 10�6

Rate sensitivity N [�] 4.55 7.79 2.30 7.94
Hardening parameter h1 [MPa] 29.91 15.83 39.71 15.22

h2 [�] 0.208 0.0979 0.285 0.0931
h3 [�] 18.41 13.73 21.67 13.53

Thermal expansion coefficient a [1/K] 1.67 · 10�5 2.89 · 10�5

Density q [kg/m3] 7260 11300
Mobility M [m5/(Js)] 2.2 · 10�25 0
Gradient energy coefficient j [GJ/m3] 16 16
Internal length parameter ‘ [nm] 25 25
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values for the pure elements, lead and tin. They are however used here only to obtain the correct interpo-
lated values. The parameters as used for the finite element calculations are shown in Table 1.
6. Numerical results

Simulations of mechanical loading have been performed on different microstructures which are assumed
not to evolve during the loading. This can be assumed for this particular test since the mechanical time scale
is very small compared to the diffusion time scale. The microstructures are obtained by solving the phase
field equations discussed in Section 2. Here the results of a simulation for static ageing at 150 �C have been
used as microstructural input for the mechanical model. For these calculations the mechanical component
of the free energy has been neglected, i.e. mechanical loading is assumed not to influence the diffusion pro-
cess. The initial conditions for these calculations are taken from a scanning electron micrograph of as-cast
eutectic tin–lead solder (Matin et al., 2004). Quantitative comparison between the simulation and the exper-
iment showed a good agreement (Ubachs et al., 2004). Four different microstructures have been subjected
to the mechanical loading, immediately after casting (as-cast), indicated as microstructure A and after 2, 6,
and 15h of ageing, respectively indicated as microstructure B, C, and D. They are shown in Fig. 4. The dark
regions correspond to the a or Pb-rich phase while the light regions correspond to the b or Sn-rich phase.

The specimens are subjected to cyclic shearing to 2% global deformation after which the direction of
shearing is reversed until the 0% shear state is recovered. After three cycles the specimens are held to eval-
uate the relaxation behaviour. For all the microstructures a strain rate of 2 · 10�3 is used. The calculations
Fig. 4. Microstructure of aged eutectic tin–lead aged at 150 �C: (a) aged for 0h, (b) aged for 2h, (c) aged for 6h, (d) aged for 15h.
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have been performed using periodic boundary conditions: The deformation of each opposing boundary
pair is equal and the stress vectors are opposite in sign on each pair (Kouznetsova et al., 2001; Smit
et al., 1999). The appropriate dependencies for the edges, see Fig. 5, are:
~xR �~xBR ¼~xL �~xBL; and ~xT �~xTL ¼~xB �~xBL; ð64Þ

where the subscripts L, R, T, and B denote left, right, top, and bottom respectively. A regular mesh of 50 by
50 quadratic elements has been used. In this way each interface is described by approximately 3–4 quadratic
elements.

Fig. 6 shows the global reaction force as a function of time for the different microstructures. At first the
maximum reaction force increases with each cycle due to hardening of the material, but after a small num-
ber of cycles a steady state is reached. This is more clearly depicted in Fig. 7 which shows the reaction force
versus displacement curve for 12 shearing cycles performed on microstructure D with _e ¼ 2
 10�3.
Fig. 5. Periodic mesh and boundary conditions.
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Fig. 6. Reaction force versus time for different microstructures, strain rate 2 · 10�3.
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Fig. 7. Reaction force versus displacement, microstructure D, _e ¼ 2
 10�3.
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A dependency on the microstructure can be seen in Fig. 6. Ageing of the material, which leads to an
increase of microstructural length scales, results in a lower yield point and lower reaction forces during
loading. Microstructure A clearly shows the highest overall reaction force, Microstructures B and C clearly
show a consecutive reduction of the reaction forces. However, between microstructures C and D the differ-
ence is very small. This can be explained by the fact that relatively little coarsening has occurred in this last
stage of the ageing process resulting in similar microstructures.

The tendency �small is strong� is also known to occur in single phase materials, which show a increasing
strength as the grain size decreases. The best-known macroscopic experimental consequence is the increased
flow stress on decreasing average grain size, which is expressed by the so-called Hall–Petch relation (Evers
et al., 2004). This strengthening effect is commonly attributed to stress concentrations originating from
Fig. 8. Evolution of the equivalent Cauchy stress field in MPa for the as-cast microstructure, strain rate 2 · 10�3: (a) t = 10s,
(b) t = 20s, (c) t = 30s, (d) t = 40s, (e) t = 50s, (f) t = 60s, (g) t = 70s.



Fig. 9. Evolution of the effective viscoplastic strain field for the as-cast microstructure, strain rate 2 · 10�3: (a) t = 10s, (b) t = 20s,
(c) t = 30s, (d) t = 40s, (e) t = 50s, (f) t = 60s, (g) t = 70s.

Fig. 10. Equivalent viscoplastic strain at 70s for the different microstructures, strain rate 2 · 10�3: (a) aged for 0h, (b) aged for 2h,
(c) aged for 6h, (d) aged for 15h.
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material heterogeneity, which obstruct plastic flow. Therefore, next, the strain and stress distributions with-
in the microstructures will be investigated to find the cause behind the strengthening effect found here for
the eutectic tin–lead system.

The development of the equivalent Cauchy stress, req for microstructure A (_e ¼ 2
 10�3) is shown in
Fig. 8. It can be clearly seen that stress concentrations develop in the hard b-phase. Since the yield stress
is much lower in the a-phase it will start to flow plastically before the yield stress in the rest of the material
has been reached. The hardening induced by the plastic flow is not significant enough to smooth the stress
field. This can be observed in Fig. 9 which shows the development of the effective viscoplastic strain, evp.
The plastic strain is almost completely confined to the a-phase. It should be noted that due to the locali-
sation of plastic straining the effective viscoplastic strain reaches values of 0.22 already after 3 cycles, which
is much higher than the applied macro shear strain of 0.02. The heterogeneous plastic straining of the mate-
rial results in residual stresses after relaxation. All the other simulations show the same qualitative behav-
iour. Therefore the evp is only shown at the end of the simulation, Fig. 10, and the req at t = 60 and 70s,
that is at maximum stress levels and after relaxation, Figs. 11 and 12.

As opposed to the reaction force, the stress concentrations increase with increasing microstructural
sizes. This is due to the fact that the finer microstructure allows for a better distribution of the stresses,
whereas the coarser microstructure forces the stresses to localize more. The residual stresses after relax-
ation do not show a significant difference between the various microstructures. The effect of increasing
microstructural length scale can be seen more clearly by comparing the equivalent viscoplastic strain
fields, see Fig. 10. Increased ageing, or coarsening, leads to increased localisation behaviour and thus
higher (local) values for the viscoplastic strain. Note that the maximum viscoplastic strain is in fact
higher for the 6h aged microstructure than for the 15h one. This is due to the higher curvature at
Fig. 11. Equivalent Cauchy stress in MPa at 60s for different microstructures, strain rate 2 · 10�3: (a) aged for 0h, (b) aged for 2h,
(c) aged for 6h, (d) aged for 15h.
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the most prominent localisation site for the two microstructures, while the difference in the sizes of the
microstructures is not pronounced.
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The reason behind the strengthening effect can be seen in Fig. 10. For the initial microstructure, with the
smallest phase region size, the effective viscoplastic strain distributed relatively evenly over the material.
This indicates that the deformation needed to accommodate the prescribed displacement occurred in both
phases. However, as the microstructure coarsens more of the viscoplastic strain is confined to the softer Pb-
rich phase. Fig. 10(d) shows almost no viscoplastic deformation occurred in the Sn-rich phase. This means
that only the soft phase has to undergo deformation which leads to a lower required force for this case com-
pared to a fine microstructure.

To demonstrate the influence of the strain rate the as-cast microstructure is also loaded with rates of
respectively 2 · 10�4 and 2 · 10�2. Fig. 13 shows the reaction forces versus time for the three strain rates.
Increasing the rate also increases the flow stress and reaction force. The stress and effective viscoplastic
strain fields show similar behaviour, see Figs. 14–16. The localisation occurs in the same positions for
Fig. 15. Equivalent Cauchy stress in MPa at t = 60 for different strain rates, as-cast microstructure: (a) strain rate 2 · 10�4, (b) strain
rate 2 · 10�3, (c) strain rate 2 · 10�2.

Fig. 14. Equivalent viscoplastic strain at 70s for various strain rates, as-cast microstructure: (a) strain rate 2 · 10�4, (b) strain rate
2 · 10�3, (c) strain rate 2 · 10�2.



Fig. 16. Equivalent Cauchy stress in MPa at t = 70 for different strain rates, as-cast microstructure: (a) strain rate 2 · 10�4, (b) strain
rate 2 · 10�3, (c) strain rate 2 · 10�2.
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all strain rates, but increases in intensity. Note that the increase of evp with increasing strain rate also results
in higher residual stresses.
7. Discussion and conclusions

A model is presented to describe the mechanical behaviour of microstructure dependent materials. The
model describes the microstructure evolution using a phase field approach and employs a constitutive
model dependent on the phase field to account for the underlying microstructure. It has been demonstrated
by applying it to eutectic tin–lead solder, a material whose mechanical characteristics are strongly influ-
enced by its continuously evolving microstructure. For the constitutive behaviour the elasto-viscoplastic
Perzyna model has been adopted. The Perzyna model allows the use of different hardening functions, which
makes it suitable for a large variety of materials. It is coupled to the phase field model through the model
parameters which are taken dependent on the mass fraction field resulting from the solution of the phase
field equations. In this way the microstructure is accounted for using a continuum mechanics approach.
The approach does not require interface tracking methods since all information about the interface is in-
cluded in the phase field. Furthermore, the evolution of a microstructure can be calculated using one mesh,
no remeshing needs to be done.

Two-dimensional simulations of cyclic shearing have been performed using various microstructures.
These microstructures were obtained by performing a simulation of static ageing of eutectic tin–lead at
150 �C with the phase field model. The mechanical simulations demonstrate a dependency of the material
behaviour on the microstructure. Microstructures that have been aged for longer periods of time not only
show larger microstructural length scales, but also a decrease in resulting reaction force, indicating micro-
structural softening of the material.

The difference between the various microstructures is even more pronounced when the stress field and
the effective viscoplastic strain rate are examined locally. As the microstructural length scales increase, more
pronounced localisation patterns are found. Both req and evp locally reach significantly higher values for
aged microstructures. Because of the difference between the yield stress of the two phases present in the
material, most plastic flow occurs in the softer a-phase. Locally the plastic strain can reach values much
higher than the macroscopically applied strain. Due to this heterogeneous plastic straining residual stresses
appear in the material after relaxation.
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Frear et al. (1988) found that regions of high strain in the eutectic tin–lead show a higher degree of
coarsening. Furthermore, it is found that these regions of inhomogeneous coarsening are the crack nucle-
ation sites during thermal cycling (Frear, 1989; Hacke et al., 1998). The cracks occur on the interface be-
tween the Sn-rich and the Pb-rich phase (Frear, 1989; Zhao et al., 2000). The results presented in this
paper demonstrate that a coarser microstructure leads to significantly higher local values of the viscoplas-
tic strain and of the stresses. Future work will be focussed on the incorporation of damage into the pre-
sented model.
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Appendix A. Finite element implementation

A.1. Elastic increment

For a fully elastic increment, i.e. u < 0, the incremental update for the Kirchhoff stress tensor reads:
s ¼ FD � st � Fc
D þHðJÞ : eD: ðA:1Þ
The variation of the stress then becomes:
ds ¼ dFD � st � Fc
D þ FD � st � dFc

D þ oH

oJ
: eDdJ þHðJÞ : deD; ðA:2aÞ

ds ¼ dFD � F�1
D � FD � st � Fc

D þ FD � st � Fc
D � F�c

D � dFc
D þ J

oH

oJ
: eDF

�1 : dF �H

:
1

2
dF�c

D � F�1
D þ F�c

D � dF�1
D

	 

; ðA:2bÞ

ds ¼ Ld � FD � st � Fc
D þ FD � st � Fc

D � Lc
d þ J

oH

oJ
: eDI

� �
: Lc

d þH

:
1

2
F�c

D � dFc
D � F�c

D � F�1
D þ F�c

D � F�1
D � dFD � F�1

D

� �
; ðA:2cÞ

ds ¼ ½2IS � FD � st � Fc
D� : Lc

d þ J
oH

oJ
: eDI

� �
: Lc

d þH :
1

2
Lc

d � F�c
D � F�1

D þ F�c
D � F�1

D � Ld

� �
; ðA:2dÞ

ds ¼ 2IS � FD � st � Fc
D þ J

oH

oJ
: eDI

� �
: Lc

d þH : IS : F�c
D � F�1

D � Ld

� �
; ðA:2eÞ

ds ¼ C : Lc
d; ðA:2fÞ
with
C ¼ 2IS � FD � st � Fc
D þ J

oH

oJ
: eDI þH : ðIS � F�c

D � F�1
D Þrc;
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where use has been made of
d detðAÞ ¼ o detðAÞ
oA

: dA ¼ detðAÞA�1 : dA: ðA:3Þ
The derivative of the material tensor H, Eq. (46), with respect to J reads:
oH

oJ
¼ �2k

o lnðJÞ
oJ

Irc ¼ �2k
1

J
Irc: ðA:4Þ
A.2. Viscoplastic increment

The variation of the stress tensor in the case of elasto-viscoplastic behaviour, Eq. (43a), reads
ds ¼ d�s � dH : DcvpN �H : dDcvpN �H : DcvpdN ; ðA:5Þ
where d*s is the variation of the Kirchhoff stress tensor in case of purely elastic deformation. Variation of
the material tensor H, Eq. (46), the viscoplastic multiplier Dcvp, Eq. (43b), and the plastic flow direction N
respectively read
dH : DcvpN ¼ �2K
1

J
JI : Lc

dI
rc : DcvpN ¼ �2KDcvpNI : Lc

d; ðA:6Þ

dDcvp ¼ Dtgd
seq � sy

u0

� �N

¼ NDt
g
sy0

seq � sy
sy0

� �N�1

dseq � dsy
	 


¼ c1 N : ds � osy
oDcvp

dDcvp

 !
¼ c2N : ds; ðA:7Þ
with
c1 ¼ NDt
g
u0

seq � sy
u0

� �N�1

and c2 ¼
c1

1þ osy
oevp

oevp
oDcvp

c1
; ðA:8Þ
and
dN ¼ 3

2

1

seq
dsd � 3

2

sd

s2eq
dseq ¼

3

2

1

seq
ds � 1

3
II : ds

� �
� 1

seq
NN : ds ¼ 1

seq

3

2
I� 1

2
II �NN

� �
: ds:

ðA:9Þ

Substituting Eqs. (A.6), (A.7), and (A.9) in Eq. (A.5) then results in
ds ¼ N�1 : Cþ Tð Þ : Lc
d; ðA:10Þ
with
T ¼ 2DcvpkNI ; ðA:11Þ
and
N ¼ Iþ c2H : NN þH : Dcvp
1 3

I� 1
II �NN

� �
: ðA:12Þ
seq 2 2
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A.3. Stress update algorithm

It can be shown that for the current hyperelastic model the direction of plastic flow is fully determined by
the elastic predictor state, N = *N.
s ¼ �s � 3 l � k lnðJÞ½ �Irc : Dcvp
sd

seq
; ðA:13aÞ

sd ¼ �sd � 3 l � k lnðJÞ½ �Irc : Dcvp
sd

seq
; ðA:13bÞ

sd ¼ �sd � 3 l � k lnðJÞ½ �
Dcvp
seq

sd; ðA:13cÞ

sd ¼ 1þ 3½l � k lnðJÞ�
Dcvp
seq

� ��1
�sd; ðA:13dÞ

seq ¼ 1þ 3½l � k lnðJÞ�
Dcvp
seq

� ��1
�seq: ðA:13eÞ
Furthermore, for the stress update algorithm the nodal displacements are known and fixed, except for
the plane stress case. Therefore the volume and the stresses of the elastic predictor will not change, i.e.
dJ and d*s are zero.

To use the Newton–Raphson method system (43) is first rewritten into
s � �s þH : NDcvp ¼ 0; ðA:14aÞ

Dcvp � Dtg
u
u0

� �N

¼ 0: ðA:14bÞ
Decomposing system (43) in an iterative manner thus results in
s þ ds � �s þH : NðDcvp þ dDcvpÞ ¼ 0; ðA:15aÞ

Dcvp þ dDcvp � Dtg
u
u0

� �N

� DtgN
u0

u
u0

� �N�1

du ¼ 0: ðA:15bÞ
Substituting the definition of the yield function u = seq�sy and using the variation of seq,
dseq ¼
1

2

3

2
sd : sd

� ��1=2

2
3

2
sd : dsd

� �
ðA:16Þ

¼ 3

2

1

seq
sd : ds � sd :

1

3
II : ds ðA:17Þ

¼ 3

2

1

seq
sd � sd :

1

3
II

� �
: ds ðA:18Þ

¼ 3

2

sd

seq
: ds ¼ N : ds; ðA:19Þ
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then results in
I : ds þH : NdDcvp ¼ �s � s �H : NDcvp; ðA:20aÞ

dDcvp � c1ðN : ds � dsyÞ ¼ Dtg
u
u0

� �N

� Dcvp; ðA:20bÞ
with
c1 ¼
DtgN
u0

u
u0

� �N�1

: ðA:21Þ
Assuming the incremental hardening law to be a function of D cvp only, i.e. the yield stress can be a func-
tion of the viscoplastic multiplier and/or its rate the system that needs to be solved then becomes
I : ds þH : NdDcvp ¼ �s � s �H : NDcvp; ðA:22aÞ

�c1N : ds þ 1þ c1
osy

oDcvp

 !
dDcvp ¼ Dtg

u
u0

� �N

� Dcvp: ðA:22bÞ
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